Limite de functii

fie functia

$$f(x)=\frac{1}{x^2}$$
$$\lim_{x \to +\infty}\frac{1}{x^2}=0$$
$$\lim_{x \to -\infty}\frac{1}{x^2}=0$$
$$\lim_{x \to 0 x>0}\frac{1}{x^2}=+\infty$$
$$\lim_{x \to 0 x<0}\frac{1}{x^2}=+\infty$$

$$\lim_{x \to +\infty}\frac{-3x^3+7x-5}{1+x+x^2}=-\infty$$
$$\lim_{x \to +\infty}\frac{-4x+3}{3x^2+1}=$$
$$\lim_{x \to 3, x>3}\frac{-5x}{3-x}=+\infty$$
$$\lim_{x \to 3, x<3}\frac{-5x}{3-x}=-\infty$$
$$\lim_{x \to -3,x>-3}\frac{3x^2-5x}{x^2+4x+3}=-\infty$$
$$\lim_{x \to -3,x<-3}\frac{3x^2-5x}{x^2+4x+3}=+\infty$$

$$\lim_{x \to 3}\frac{3x^2-5x}{x^2+4x+3}=\frac{1}{2}$$

Back to top